Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (4): 12-18.doi: 10.3969/j.issn.2097-0706.2023.04.002
• Summary on Viewpoints • Previous Articles Next Articles
LI Minxia(), HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua
Received:
2022-08-04
Revised:
2022-09-06
Accepted:
2023-04-25
Published:
2023-04-25
Supported by:
CLC Number:
LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps[J]. Integrated Intelligent Energy, 2023, 45(4): 12-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.04.002
[1] | 生态环境部. 我国正式接受《〈关于消耗臭氧层物质的蒙特利尔议定书〉基加利修正案》[R/OL].(2021-06-21)[2022-04-10]. https://www.mee.gov.cn/ywdt/hjywnews/202106/t20210621_841062.shtml. |
[2] |
LLOPIS R, NEBOT-ANDRéS L, SáNCHEZ D, et al. Subcooling methods for CO2 refrigeration cycles:A review[J]. International Journal of Refrigeration, 2018, 93:85-107.
doi: 10.1016/j.ijrefrig.2018.06.010 |
[3] |
BASTANI A, ESLAMI-NEJAD P, BADACHE M, et al. Experimental characterization of a transcritical CO2 direct expansion ground source heat pump for heating applications[J]. Energy and Buildings, 2020, 212:109828.
doi: 10.1016/j.enbuild.2020.109828 |
[4] |
KURTULUS K, COSKUN A, AMEEN S, et al. Thermoeconomic analysis of a CO2 compression system using waste heat into the regenerative organic Rankine cycle[J]. Energy Conversion and Management, 2018, 168:588-598.
doi: 10.1016/j.enconman.2018.05.037 |
[5] | 吴彦丽, 陈赞林, 赵子萱, 等. CO2热泵耦合燃气锅炉供暖系统研究[J]. 热力发电, 2021, 50(5):133-138. |
WU Yanli, CHEN Zanlin, ZHAO Zixuan, et al. Research on CO2 heat pump coupling gas boiler heating system[J]. Thermal Power Generation, 2021, 50(5):133-138. | |
[6] |
陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9):4030-4036.
doi: 10.11949/j.issn.0438-1157.20180224 |
CHEN Zidan, LUO Huilong, LIU Jinchun, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9):4030-4036.
doi: 10.11949/j.issn.0438-1157.20180224 |
|
[7] | 何璇, 雷波. 高寒地区槽式太阳能集热器与CO2热泵复合采暖系统的优化研究[J]. 制冷与空调(四川), 2019, 33(1):6-10. |
HE Xuan, LEI Bo. Optimization research of combining parabolic trough collectors and CO2 air-source heat pump heating system in alpine region[J]. Refrigeration and Air Conditioning, 2019, 33(1):6-10. | |
[8] | 齐海峰, 代宝民, 刘圣春, 等. CO2空气源热泵供暖系统性能分析[J]. 制冷学报, 2020, 41(4):37-44. |
QI Haifeng, DAI Baomin, LIU Shengchun, et al. Performance analysis of CO2 air-source heat pump heating system[J]. Journal of Refrigeration, 2020, 41(4):37-44.
doi: 10.1016/j.ijrefrig.2013.06.005 |
|
[9] |
刘雪涛, 李敏霞, 马一太, 等. CO2跨临界热泵系统采暖工况下能效和经济对比分析[J]. 化工进展, 2021, 40(3):1315-1324.
doi: 10.16085/j.issn.1000-6613.2020-0905 |
LIU Xuetao, LI Minxia, MA Yitai, et al. Comparative analysis of energy efficiency and economy of CO2 transcritical heat pump system under heating condition[J]. Chemical Industry and Engineering Progress, 2021, 40(3):1315-1324.
doi: 10.16085/j.issn.1000-6613.2020-0905 |
|
[10] | 王迪. 跨临界CO2热泵热水器系统的特性研究[D]. 郑州: 郑州大学, 2021. |
WANG Di. Study on the characteristics of a transcritical CO2 heat pump hot water system[D]. Zhengzhou: Zhengzhou University, 2021. | |
[11] | 刘宇轩, 许辉, 李猛, 等. 二氧化碳(CO2)热泵热水器的优势和应用难点及一种融霜问题解决方案[J]. 液压气动与密封, 2022, 42(3):79-82. |
LIU Yuxuan, XU Hui, LI Meng, et al. Application status and difficulties of carbon dioxide (CO2) heat pump water heater and a solution to defrosting problem[J]. Hydraulics Pneumatics & Seals, 2022, 42(3):79-82. | |
[12] | 吕静, 李果, 赵琦浩, 等. CO2热泵热水器气冷器的热力性能研究[J]. 制冷学报, 2019, 40(5):161-166. |
LÜ Jing, LI Guo, ZHAO Qihao, et al. Study on thermal performance of gas cooler for CO2 heat pump water heater[J]. Journal of Refrigeration, 2019, 40(5):161-166.
doi: 10.1016/j.ijrefrig.2013.10.014 |
|
[13] |
张超, 赵晓丹, 赵泽华. 直热式空气源CO2热泵热水器系统运行特性试验研究[J]. 流体机械, 2021, 49(3):74-79.
doi: 10.3969/j.issn.1005-0329.2021.03.012 |
ZHANG Chao, ZHAO Xiaodan, ZHAO Zehua. Experimental study on operation characteristics of direct heating air source CO2 heat pump water heater system[J]. Fluid Machinery, 2021, 49(3):74-79.
doi: 10.3969/j.issn.1005-0329.2021.03.012 |
|
[14] | 许文华, 李惟毅, 郭强. 考虑环境影响的CO2/低GWP混合工质热泵热水器工质优选[J]. 太阳能学报, 2018, 39(1):84-89. |
XU Wenhua, LI Weiyi, GUO Qiang. Working fluids selecting of CO2 blends with low-GWP(global warming potential)heat pump system considering impact of environment[J]. Acta Energiae Solaris Sinica, 2018, 39(1):84-89. | |
[15] | 陈凯胜. 电动汽车二氧化碳热泵空调制热性能及控制策略模拟研究[D]. 北京: 北京理工大学, 2018. |
CHEN Kaisheng. Research on simulation of carbon dioxide heat pump air conditioner heating performance and control strategy for electric vehicles[D]. Beijing: Beijing Institute of Technology, 2018. | |
[16] | 刘业凤, 王雨晴, 唐丹萍. 新能源汽车CO2热泵空调系统仿真研究[J]. 农业装备与车辆工程, 2021, 59(12):45-51. |
LIU Yefeng, WANG Yuqing, TANG Danping. Simulation research on CO2 heat pump air conditioning system of new energy vehicle[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(12):45-51. | |
[17] | 刘业凤, 王君如, 钟文轩. 纯电动车用CO2空调整车热管理系统仿真研究[J]. 农业装备与车辆工程, 2022, 60(1):29-33. |
LIU Yefeng, WANG Junru, ZHONG Wenxuan. Simulation on thermal management system for CO2 air conditioning of pure electric whole vehicle[J]. Agricultural Equipment & Vehicle Engineering, 2022, 60(1):29-33. | |
[18] | 孟祥瑞. 跨临界二氧化碳热泵型电动汽车空调系统研究[D]. 天津: 天津大学, 2019. |
MENG Xiangrui. Research on transcritical CO2 heat pump air conditioning system for electric vehicles[D]. Tianjin: Tianjin University, 2019. | |
[19] | 彭旭. 纯电动汽车用跨临界CO2热泵空调系统仿真优化及实验研究[D]. 郑州: 郑州大学, 2020. |
PENG Xu. Simulation optimization and experimental research of transcritical CO2 heat pump and air-conditioning system for pure electric vehicle[D]. Zhengzhou: Zhengzhou University, 2020. | |
[20] |
SARKAR J, BHATTACHARYYA S, GOPAL M R. Transcritical CO2 heat pump dryer:Part 2.Validation and simulation results[J]. Drying Technology, 2006, 24(12):1593-1600.
doi: 10.1080/07373930601030945 |
[21] |
ERDEM S, HEPERKAN H. Numerical investigation of the effect of using CO2 as the refrigerant in a heat pump tumble dryer system[J]. Drying Technology, 2014, 32(16):1923-1930.
doi: 10.1080/07373937.2014.924524 |
[22] |
SIAN R A, WANG C C. Comparative study for CO2 and R-134a heat pump tumble dryer —A rational approach[J]. International Journal of Refrigeration, 2019, 106:474-491.
doi: 10.1016/j.ijrefrig.2019.05.027 |
[23] | 王帅. 跨临界CO2热泵干燥过程的理论分析与应用研究[D]. 保定: 华北电力大学, 2013. |
WANG Shuai. Theoretical analysis and applied research of transcritical CO2 heat pump drying process[D]. Baoding: North China Electric Power University, 2013. | |
[24] | 中国节能协会热泵专业委员会. 二氧化碳热泵发展白皮书(2022年)[R].(2022-07). |
[25] | 中国节能协会热泵专业委员会. 热泵助力碳中和白皮书(2021年)[R].(2021-10). |
[26] |
SCHMIDT E L, KLÖCKER K, FLACKE N, et al. Applying the transcritical CO2 process to a drying heat pump[J]. International Journal of Refrigeration, 1998, 21(3):202-211.
doi: 10.1016/S0140-7007(98)00021-8 |
[27] |
KLÖCKER K, SCHMIDT E L, STEIML F. Carbon dioxide as a working fluid in drying heat pumps[J]. International journal of refrigeration, 2001, 24(1):100-107.
doi: 10.1016/S0140-7007(00)00067-0 |
[28] | 程同, 李娟玲, 杨道龙. 全封闭空气能CO2热泵干燥系统的研制[J]. 江苏农业科学, 2016, 44(7):403-406. |
[29] | 何艳东. CO2热泵干燥装置的干燥性能研究与回油装置优化[D]. 南京: 南京农业大学, 2017. |
HE Yandong. Study on drying performance of CO2 heat pump dryer and optimization of oil return device[D]. Nanjing: Nanjing Agricultural University, 2017. | |
[30] | 刘圣春, 林建森, 滑雪, 等. 跨临界CO2热泵干燥系统研究现状与进展[J]. 制冷学报, 2023, 44(1):14-23,42. |
LIU Shengchun, LIN Jiansen, HUA Xue, et al. Research status and progress of transcritical CO2 heat pump drying system[J]. Journal of Refrigeration, 2023, 44(1):14-23,42. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WANG Zhe, CHENG Gang, XING Zuoxia, FU Qitong, FU Changtao. Modeling and control optimization of photovoltaic-thermal heating system based on MPC [J]. Integrated Intelligent Energy, 2024, 46(7): 21-28. |
[3] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[4] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[5] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[6] | LI Bin, BAI Xuefeng, LI Zhichao, WANG Shijun, LIU Chun, CHENG Ziyun. Design and prospect of distributed electric heating interactive mode based on federated learning [J]. Integrated Intelligent Energy, 2024, 46(1): 56-64. |
[7] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[8] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[9] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[10] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[11] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[12] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[13] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[14] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[15] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||